
Back-end System

✧ Optimization 
✓ Memory optimization 
✓ Operator fusion 

✧ Scheduling 
✓ Auto-parallelization
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Back-end

import mxnet as mx 
a = mx.nd.zeros((100, 50)) 
b = mx.nd.ones((100, 50)) 
c = a * b 
c += 1

import mxnet as mx 
net = mx.symbol.Variable('data') 
net = mx.symbol.FullyConnected( 
         data=net, num_hidden=128) 
net = mx.symbol.SoftmaxOutput(data=net) 
texec = mx.module.Module(net) 
texec.forward(data=c) 
texec.backward()

Front-end



Memory Optimization
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Traverse the computation graph to reduce the memory footprint  
with time complexity linear in graph size
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Results for Deep CNNs
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Prediction
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✦ Needs an extra forward pass 
✦ Reduces the memory complexity from           to               ,  

where n is the number of layers

Trade Computation for Memory
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Results on ResNet
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✦ Batch size = 32 
✦ Increase 30% 

computation cost 
when optimization is 
applied

4.1 GB

157.4 GB



Operator Fusion and Runtime Compilation
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Fusion CodeGen

Fuse Adam into a single operator

20% performance 
improvement on ResNet


