
Back-end System

✧ Optimization
✓ Memory optimization
✓ Operator fusion

✧ Scheduling
✓ Auto-parallelization

11

a b

1

+

⨉

c

fullc

softmax

weight

bias

Back-end

import mxnet as mx
a = mx.nd.zeros((100, 50))
b = mx.nd.ones((100, 50))
c = a * b
c += 1

import mxnet as mx
net = mx.symbol.Variable('data')
net = mx.symbol.FullyConnected(
 data=net, num_hidden=128)
net = mx.symbol.SoftmaxOutput(data=net)
texec = mx.module.Module(net)
texec.forward(data=c)
texec.backward()

Front-end

Memory Optimization

a

b c

dnow a is
deletable

aliveness analysis

b ca

shared space between
variables

share a and b

Traverse the computation graph to reduce the memory footprint  
with time complexity linear in graph size

12

m
em

or
y (

GB
)

0

2.25

4.5

6.75

9

alexnet inception vgg

baseline mxnet

Results for Deep CNNs

13

Training

2.6x

1.8x

m
em

or
y

(G
B)

0

2.25

4.5

6.75

9

alexnet inception vgg

baseline mxnet

Prediction

4.4x 4x3.2x1.8x

winner neural networks

14

✦ Needs an extra forward pass
✦ Reduces the memory complexity from to ,  

where n is the number of layers

Trade Computation for Memory
forward backword

Segment 1

Segment 2

forward

only the
segment

head node
results are

stored

re-
compute

results

re-
compute

results

backward backward

O(n) O(
p
n)

Results on ResNet

15

M
em

or
y (

GB
)

1

10

100

of layers

100 1000

No optimization With optimization

✦ Batch size = 32
✦ Increase 30%

computation cost
when optimization is
applied

4.1 GB

157.4 GB

Operator Fusion and Runtime Compilation

16

add

mul

x0 x1

x2

fused
op

x0 x1 x2

Fusion CodeGen

Fuse Adam into a single operator

20% performance
improvement on ResNet

